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A high degree of control over the structure and dynamics of domain patterns in nonequilibrium
systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations.
An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces
oscillations with a frequency that scales like the square root of the field gradient. Nonmonotonic
profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and
phases of oscillations.

PACS numbers: 82.20.Mj, 05.45.+r

Technological applications of pattern forming systemssufficient to induce spontaneous transitions and can lead to
are largely unexplored. The few applications that haveeomplex pattern formation phenomena such as breathing
been pursued, however, have had enormous technologidabyrinths, spot replication [11,13], and spiral turbulence
impacts. Magnetic domain patterns in memory device$14]. Itis this dynamical flexibility near NIB bifurcations
provide an excellent example [1]. Intensive research efthat we wish to exploit. By forcing transitions between the
fort has been devoted recently to dissipative systems heléft and right propagating fronts, using spatially dependent
far from thermal equilibrium [2]. Unlike magnetic mate- external fields, we propose to obtain a high degree of con-
rials, such systems are nongradient in general, and theirol on pattern behavior.
asymptotic behaviors need not be stationary; a variety of We demonstrate this idea using a forced activator-
dynamical behaviors can be realized, including planar anéhhibitor system of the form

circular traveling waves, rotating spiral waves, breathing u =€ Yu—u® —v) + uy,,
structures, and spatiotemporal chaos. This wealth of be-
haviors opens up new opportunities for potential techno- v =u— av v + bt Juy, 1)

logical applications. Their realizations, however, dependvhereu, the activator, and, the inhibitor, are scalar real
on the ability to control spatiotemporal patterns by weakfields, and: andJ are external fields. With the appropriate
external forces. Most studies in this direction have focusegdhoice ofa; > 0, the system (1) has two linearly stable
on drifting localized structures [3]. stationary uniform solutions, an “up” state+,v+) and

In this paper we present a novel way to control do-a “down” state(u—,v—), and front solutions connecting
main patterns far from equilibrium. We consider dissipa-these states. The domain patterns to be considered here
tive systems exhibiting parity breaking front bifurcations consist of one-dimensional arrays of up state regions sepa-
(also referred to as nonequilibrium Ising-Bloch or NIB rated by down state regions. In the absence of the external
transitions [4,5]), in which stationary fronts lose stability fields, a stationary front solution, stable fer> e.(5),
to pairs of counterpropagating fronts. Examples of sysloses stability in a pitchfork bifurcation to a pair of fronts
tems exhibiting NIB bifurcations include liquid crystals propagating in opposite directions at constant speed. For
[6] and anisotropic ferromagnets [7] subjected to rotatinge/5 < 1 the bifurcation point is given by, = 9/84°6
magnetic fields, chains of coupled electrical oscillators [8]where ¢g> = a; + 1/2 [14]. Activator-inhibitor models
the catalytic CO oxidation on a platinum surface [9,10], thehave been used to describe some of the systems mentioned
ferrocyanide-iodate-sulphite (FIS) reaction [11], and semiabove [8—10,12]. Inthese systemss usually a parameter
conductor etalons [12]. A prominent feature of these systhat introduces an asymmetry between the up and down
tems is that transitions between the parity broken statestates. Inthe context of chemical reactions involving ionic
the left and right propagating fronts, become feasible aspecies/ may stand for an electric field [15].
the front bifurcation is approached. Indeed, intrinsic dis- Consider first the effect of a constant external field
turbances, like front curvature and front interactions, aren the front velocity. Away from a front bifurcation
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the effect of a weak field is captured well by a linear 0.5 :
approximation, and therefore the effect of the field is
small. This is not the case close to a front bifurcation;
the velocity—external field relation becomes multivalued
(or hysteretic) even for a weak field as illustrated in
Fig. 1 [8,10,13,16]. This form is a generic unfolding of
a pitchfork bifurcation and holds for various unfolding
forces and parameters including intrinsic disturbances like £
curvature [13]. We emphasize that the termination points, &
J1 and J,, of the upper and lower branches lie close to

J = 0. The significance is thaweakexternal fields can
induce transitions between the two branches, or reverse —0.5 } : }

t Velocity
e
<)
|
T

the direction of front propagation. —0.05 J, 0.00 I 0.05
The effect of anonuniformexternal field [17] can be J

understood intuitively in the following way. Consider _ _ _

a constanth and a linear profile forJ: J = —ax, FIG. 1. Front velocity vs external field], near the nonequi-

. . . . librium Ising-Bloch bif tion. P t = 3. =
where0 < a < 1. This choice divides space into three (l)'orllurg j'g% aoncdh |:u(r)<?a lon. Parameters are = 3.0, ¢

regions according to the type and number of existing front

solutions: (i)x > x; = —J;/a, whereJ < J; and only

a single front corresponding to a downhstate invading - consider first the inner region. Expressing (1) in a frame
an up state exists, (iy <x, = —J»/a, whereJ > J moving with the frontx — r = x — x(¢), stretching the

and only a single front corresponding to an up Statgpaial coordinate according to— r/+/e, and expand-
invading a down state exists, and (ith) < x < x;, where iNg u = uo + Jeu + eur + ---, v =1vp + Jevs +

Ji < J < J, and both fronts coexist. This profile of .’ . ‘e find at order unity the stationary front solu-

results in anoscillating front, with oscillations roughly _ > _ .

. X ’ . tion, ug = —tanhz/+/2), vo = 0. At order./e we find
spanning the interval, < x < x;. The front propagation "o Hz/2). wo €
direction is reversed during transitions from the upper to uy = vy — sl L=+1-32. (2

the lower velocity branch at = J, and from the lower
to the upper branch at ~ J,. Obviously, a variety of Solvability of (2) gives
pattern behaviors can be induced using a nonmonotbnic
profile. For example, a single hump profile can induce a yr = —(3/nx/§)vf(t), 3
breathing domain.

We now turn to a quantitative study of front dynam- up to corrections oD (), wherey; = x;/+/8, %> = €8,
ics and relate pattern characteristics (e.g., breathing frendv/(r) = v(0,r) is the yet undetermined value of the
guency) to control parameters. We assuene 1 and inhibitor at the front position- = 0.
distinguish between an inner region, the narrow front re- A dynamical equation fop, follows from an analysis
gion, x = xy, whereu varies sharply over a distance of of the outer regions. First we go back to the unstretched
O ({e), and outer regionsy < xy andx > x;, whereu coordinate system and rescale the spatial coordinate
varies on the same scale as according toy = r/~/8. At order unity we find

v, — yrvy = ut(v) — ajv + vy, — aly + yplvy + h, y =0, 4)

and a similar equation foy = 0 with u(v) replaced byu_(v). Hereu-(v) are the outer solution branches of the
cubic equationt — u> — v = 0. In (4) we assumed the fieldis constant and took a linear profile= —ax. Fora,
sufficiently large we may linearize the branchesv) aroundv = 0, u~(v) = =1 — v /2. Inserting (3) into (4) and
using the approximate forms far (v) we find the free boundary problem

3
Mv = {‘H —aly T vy + h = 50,0y, y =0,

3
—1 = aly + ypvy + h — n—\/zv(O,t)vy, y =0,

_ _ _g |
R [wh—o=lvyh-o 05’3 To solve the free boundary problem (5) we assume the
(5) system is close to the front bifurcation so that the spegd,
where M = 9, + ¢> — 92, the square brackets denote of the propagating solutions in the absence of the external
jumps across the free boundaryyat= 0, andv(0,¢) and fields is small. We also take the external fields to be
yy(t) satisfy (3). of orderc®: a = apc3, h = hoc®. We now expand the
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propagating solutions as a power serieg,in

v(y,1,T) = v9(y) + Z v (y,1,T),

n=1

(6)

Equations (3) and (11) describe the dynamics of fronts
near a NIB bifurcation, subjected to a constant fiéld
and a linearly space dependdntield. In addition to the
translational degree of freedom, the dynamics involve

where v©(y), the statlonary front solution, is an odd a second degree of freedom, the value of the inhibitor at

function given byv©@(y) = g 2(e % — 1) for y = 0,

the front positionv, which is responsible for transitions

and T = ¢?¢ is a slow time scale characterizing the between the left and right propagating fronts. Without
nonsteady front motion near the bifurcation. Expandinghe field J the system (3) and (11) is decoupled and

naswel,np = n. — c2n, + ¢*n, + -+, and inserting
these expansions in (5) we find
(n) +q 2y — 5’;) = —p("), n=123, (7)
where
3 (1)
1 — (0)
P \/51’6 b0ty
2 1 @ o
p() \/_ [I>O()+ e ov()]’
3y _ . 3m (1) 0
p( ) vr + \/— 2 v OU)(' )
(1) (2 3)
\/2 —=—Lvj—ov V) + v (1) + vy v(o)]

+ ap(y + yp)vl — ho. (8)
The solution of (7) with a zero initial condition (only

relevant as long as the long fast time asymptotics is

concerned) satisfies the integral equation

—q*(t—7)

[ ‘”2[77(;—7)]1/2
xj dé ex u}p(”)(f,ﬂﬂ-
)

4@t — 1)
Recall thatp™ contains the unknown™ evaluated at

v(”)(y,t, T) =

y = 0. Since the origin of the slow time scale is the

nonsteady front motion, we expeof;)zo to become in-
dependent of the fast time scaleast — . Substitut-

ing lim,—.v™(0,7,T) = v"(0,T) into (9) and setting

y = 0 we find a sequence of compatibility conditions.

The first, forn = 1,is n. = 3/2+/2¢>. The critical value

n. = n(c = 0) determines the front bifurcation point.

The compatibility condition fon = 3 is

3
vr (0,T) = f’“ v0.7) — 75 v 0.1
7?2
2 4
+ = agyr + — ho, 10
34 “0Vr T 3o (10)

where 1, = ¢n2/6+/28. Expressing (10) in terms of

vr =v(0,T) = cv“)(o T) and usingc?n, = g, — 7

we find

. V2 3,02 4

vp=—— M~ My — T 5vp + —ays + —h,
(11)

wherev; = c2vr.

reproduces the front bifurcation. The introduction of a
space dependefield couples the two degrees of freedom
and affects the front behavior in two significant ways: for
n > n. (andh # 0) it stabilizes a propagating front at a
fixed position,y; = —2¢h/a, and forn < 7. it induces
oscillations between the counterpropagating fronts. The
frequency of oscillations close to the Hopf bifurcation at
n = 1S
® = (2/V3)gVa. (12)

To test the validity of Egs. (3) and (11) we numerically

integrated the original system (1) and compared oscillating
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FIG. 2. (a) Front positiony,, vs time for an oscillating front.

The thin line represents the solution to Egs. (3) and (11), and
the diamonds are from the numerical solution of Eq. (1). (b) A
log-log plot of the oscillation frequencyy, vs the external field
gradient,a. The solid line is the relation of Eq. (12), and the
diamonds represent numerical solutions of Eq. (1). Parameters
are a; = 3.0, e =001, 6§ =277, h =0, and o = 0.005

in (a).
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300 | ; - of the pattern, the average width of the domains, and the
frequency and relative phase of oscillations are easily con-
250 trollable. Figures 3 and 4 show the effect of a nonuniform

triangular profile ofJ for n < 7.. In the absence af

ke the system supports traveling domain patterns. Switching
L 50 . onJ(x) gives rise to patterns of oscillating domains. Re-
gions ofJ(x) where the gradient (x) = |J/(x)| is steeper
100 | yield higher oscillation frequencies in accord with (12),
while widerJ triangles yield wider domains (Fig. 3). The
i relative phase of oscillation is controlled by the values of
0.1 | vy for the two fronts that bound a domain. Choosing the
J ; same sign fou; gives rise to breathing dynamics, whereas
0.0 M opposite signs yield back and forth oscillations (Fig. 4).
-0.1 | . For n > 7. arbitrary stationary domain patterns can be
0 20 40 &0 a0 formed with appropriatd (x) profiles; the only restriction
x is the requirement of a minimum domain size to guarantee

S . the dominance af over front interactions. Similar results
FIG. 3. The oscillating domain on the left has the same of

frequency as the middle domain, but the wider separatior?re obtained with anqnlj_nlformfleld and constanf.
between the/ = 0 points produces a larger domain size. The We expect the main ideas p_resentgd here to apply to
domain on the right has the same average width as the middiether models exhibiting NIB bifurcations, such as the

domain but the larger external field gradient produces higheforced complex Ginzburg-Landau equation [4].
frequency. Parameters ate = 3.0, € = 0.01, § = 2.77, and
h=0.
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